Seeing the electroporative uptake of cell-membrane impermeable fluorescent molecules and nanoparticles.
نویسندگان
چکیده
This paper presents direct visualization of uptake directionality for cell-membrane impermeant fluorescent molecules and fluorescence-doped nanoparticles at a single-cell level during electroporation. To observe directly the uptake direction, we used microchannel-type electroporation that can generate a relatively symmetric and uniform electric field. For all the image frames during electroporation, fluorescence intensities that occurred at cell membranes in both uptake directions toward the electrodes have been sequentially recorded and quantitatively analyzed pixel by pixel. In our experiments, we found that fluorescent molecules, even not labeled to target biomolecules, had their own uptake direction with different intensities. It is also observed that the uptake intensity toward the cell membrane had a maximal value at a certain electric voltage, not at the highest value of voltages applied. The results also imply that the uptake direction of fluorescence-doped nanoparticles can be determined by a net surface charge of uptake materials and sizes in the electroporative environments. In summary, we performed a quantitative screening and direct visualization of uptake directionality for a set of fluorescent molecules and fluorescence-doped nanoparticles using electric-pulsation. Taking a closer look at the uptake direction of exogenous materials will help researchers to understand an unknown uptake phenomenon in which way foreign materials are inclined to move, and furthermore to design functional nanoparticles for electroporative gene delivery.
منابع مشابه
In-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model
The uptake and transport of 9-nitrocamptothecin (9-NC), a potent anticancer agent, across Caco-2 cell monolayers was studied as a free and PLGA nanoparticle loaded drug. Different sizes (110 to 950 nm) of 9-nitrocamptothecin nanoparticles using poly (lactic-glycolic acid) were prepared by via the nanoprecipitation method. The transport of nanoparticles across the Caco-2 cell monolayer as a func...
متن کاملIn-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model
The uptake and transport of 9-nitrocamptothecin (9-NC), a potent anticancer agent, across Caco-2 cell monolayers was studied as a free and PLGA nanoparticle loaded drug. Different sizes (110 to 950 nm) of 9-nitrocamptothecin nanoparticles using poly (lactic-glycolic acid) were prepared by via the nanoprecipitation method. The transport of nanoparticles across the Caco-2 cell monolayer as a func...
متن کاملQuantification of electroporative uptake kinetics and electric field heterogeneity effects in cells.
We have conducted experiments quantitatively investigating electroporative uptake kinetics of a fluorescent plasma membrane integrity indicator, propidium iodide (PI), in HL60 human leukemia cells resulting from exposure to 40 mus pulsed electric fields (PEFs). These experiments were possible through the use of calibrated, real-time fluorescence microscopy and the development of a microcuvette:...
متن کاملA Quantitative Study of the Effect of Electroporation on the Electropermeability and Cell Survival
Introduction: Electroporation is a practical technique used to transport the molecules across the cell membrane. The utilization of fluorescent molecules is the method widely used to evaluate the electropermeability of cell membrane as a result of pulse application. It is also possible to use mathematical methods to predict the changes caused in cell electropermeability as a result of the chang...
متن کاملFacilitation of electroporative drug uptake and cell killing by electrosensitization
Cell permeabilization by electric pulses (EP), or electroporation, is widely used for intracellular delivery of drugs and plasmids, as well as for tumour and tissue ablation. We found that cells pre-treated with 100-μs EP develop delayed hypersensitivity to subsequent EP applications. Sensitizing B16 and CHO cells by splitting a single train of eight 100-μs EP into two trains of four EP each (w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 4 16 شماره
صفحات -
تاریخ انتشار 2012